
From EDAF45 to EDAG05:
a Course Transformation Story

Emma Söderberg
Dept. of Computer Science, LTH

Abstract
The department of computer science offers an appreciated course
on software development in teams (EDAF45) that for scheduling
reasons currently can’t be offered beyond the D programme. To
address this issue, the department is developing a new course on
agile software development (EDAG05) that can be offered to
non-D engineering students. In this report, we gather data about
EDAF45 and identify issues that we would like to address in the
new course. The result of this review is a proposed format for
EDAG05 where we try to address the identified issues.

1 Introduction
The department of computer science has a course, ‘Software Development in Groups’ (EDAF45),
teaching agile software development and targeting the D programme. EDAF45 has roughly the
following structure; it runs over two study periods, during the first study period there are
lectures and labs in preparation for the project, which runs in the second study period. The
project is designed to simulate a software project with a team of developers (the students) and
a customer (played by a teacher), and is centered around six development iterations.

EDAF45 has a couple of unusual elements; the project is organized around 6 iterations, each
mapping to a week where students have a mandatory full day lab (8 hours). During the project,
student groups are coached by students taking a parallel course on coaching of software teams.
This special arrangement, further described in [Hedin et al., 2005], has been successful, but the
setup is expensive and difficult to schedule. The scheduling issue is currently prohibiting the
course from being adopted by programs beyond the D programme.

Consequently, a new course, ‘Agile Software Development’ (EDAG05), is being developed. Like
EDAF45, the new course aims to teach students how to develop software in small teams, but in
addition it should be cheaper and easier to schedule. With this in mind the goal is to design a
course that runs during one study period, with less scheduled time, and with no team coaches.
Given the appreciation of EDAF45, the structure of EDAF45 is being used as a starting point for
the development of EDAG05.

In this report, we will analyze the format of EDAF45 (structure, content, and student
assessment), analyze existing course evaluation data gathered via CEQ, and gather and analyze
additional qualitative data from past and current teachers responsible for the course.



In our analysis we identify a number of issues which we address one by one and explain how
we plan to address these in the EDAG05. For some of the issues, we iterate the proposed
approach with our interview subjects to get their feedback.

The rest of this report is structured as follows; we start with some background in Section 2,
continue with an analysis of EDAF45 in Section 3, introduce and analyze EDAG05 in Section 4,
and then we summarize in Section 5.

2 Background
In this section, we give a brief description of agile software development (Section 2.1) and two
pedagogical frameworks (Section 2.2 and Section 2.3), referenced later in this report.

2.1 Agile Software Development
Agile practices have become mainstream in software development. A defining moment for the
use of agile methods was the conception of the Agile Manifesto [Beck et al., 2001]. The Agile
Manifesto, aimed at improving software development, was formulated in 2001 and was quickly
adopted by the industry to such an extent that in 2019 a world-wide annual report found 97%
of businesses using agile methods [State of Agile]. In short, the agile manifesto [Beck et al.,
2001] emphasises the following values; (1) individuals and interactions over processes and
tools, (2) working software over comprehensive documentation, (3) customer collaboration over
contract negotiation, (4) responding to change over following a plan. These core values have
led to agile practices that incorporate real-time knowledge and feedback throughout the
development process, leading to better product quality that better fit user needs.

Extreme Programming (XP) [Beck, 2004] is one software development practice outlined at
around the same time as the Agile Manifesto. XP describes twelve practices for four software
development activities (coding, testing, listening, and designing) centred around five core
values (communication, simplicity, feedback, courage, and respect). The twelve practices are
divided into four areas; fine-scale feedback (pair programming, planning game, test-driven
development, whole team), continuous process (continuous integration, refactoring, small
releases), shared understanding (coding standards, collective code ownership, simple design,
system metaphor), and programmer welfare (sustainable pace).

2.2 The Achievement Unlocked Approach
The Achievement Unlocked approach has been used by [Wrigstad & Castegren, 2017] in a
programming course at Uppsala University with 120-140 students. Using constructive
alignment [Biggs, 1996] as an inspiration, they organise their course around a list of
achievements and students can “unlock” these achievements via demonstrations during labs,
assignments, and a project in the course. The idea of unlocked achievements connects to
mastery learning [Bloom, 1968], where students need to achieve a level of mastery (to at least
80%) before moving on to subsequent knowledge. There is also a connection to flipped
classrooms [Bergmann & Sams, 2012] in the approach, because students consume material
outside the classroom and work on assignments and spend the time in the classroom on
discussion.



In the course described in [Wrigstad & Castegren, 2017], there are around 70 achievements
(presented in groups of connected achievements) and each achievement is connected to a grade
(3-5). A student must unlock all achievements for a grade to get the grade. Students decide
when they want to demonstrate achievements, and they are responsible for matching
achievements that go well together. There are plenty of opportunities for demonstrations, but
the number of slots are limited to around 30. The outcome of a demonstration (with typically
one teaching assistant and two students) is one of three; pass, fail, or fail with pushback.
Students can retry as many times as they want and during the same slot (except if they failed
with pushback when they need to wait until the next slot). During a demonstration students
state which achievements they wish to unlock, why/how these will be demonstrated together,
and what evidence they will use in the demonstration.

2.3 The Assessment Cycle
In [Reinholz, 2016], Reinholz presents a model called the assessment cycle, linking peer
assessment to self-assessment. Self-assessment is defined as having three core elements; goal
awareness, self/performance awareness, and gap closure. In short, these elements capture where
you want to be, where you are currently at, and how you go about closing the gap of where you
are and where you want to be.

With elements of self-assessment in mind, the assessment cycle includes the following steps;
task engagement (step 1), then peer analysis (step 2), then feedback provision (step 3), then
feedback reception (step 4), then peer conferencing (step 5), then revision (step 6), and then
back to step 1. This model extends a previous model of peer assessment with the addition of
step 2 and 5. The goal of these additional steps is to capture the connection to self-assessment
on a more fine-grained level. For instance, step 2 is described as connecting to goal awareness
as it provides more examples and a possibility to see quality variation, while step 3 aids
performance awareness both by explanation of ideas (by the student) and by the receiving of
feedback on explanations (from the teacher).

3 EDAF45: An Appreciated Course
In this section, we gather data about EDAF45 and identify issues to address in EDAG05.

3.1 Method
To analyze EDAF45 we gathered data about the course from the course web page, from three
past and current teachers responsible for the course, and from CEQ data gathered between
2017-2020. The data from teachers was qualitative data gathered via semi-structured
interviews carried out by the author (protocol is included in Appendix A.3).
We will refer to the interviewed teachers as T1 (currently responsible for the course), T2
(currently responsible for the companion course EDAN80), and T3 (responsible in the past). All
teachers have worked with the course for a long time; T1 has been responsible for the course
for several years, and both T2 and T3 were part of the original development of the course. The
protocol for the interviews is included in Appendix A.3. In addition to these interviews, the
author also had several informal discussions with T1, who is also part of the development of



EDAG05. These informal discussions have provided continuous feedback, during the course
development process, and the teacher has acted as a critical friend throughout this project.

3.2 Results
We present the result in terms of the structure of the course (Section 2.2.1), student assessment
(Section 2.2.2) and course assessment (Section 2.2.3).

3.2.1 Structure
EDAF45 has been given in its current form, as a mandatory 7.5hp course to second year D
programme students for roughly 20 years, and is an appreciated course that consistently gets
high scores on the CEQ evaluation (Figure 2). The structure of EDAF45 and the experience of
running the course in its current form has been summarised in [Hedin et al., 2005]. The course
plan for EDAF45 is included in Appendix A.1. The course runs over two study periods, as
illustrated in Figure 1. The bulk of lectures and labs occur in the first study period, while the
second study period is centred around the project. The first study period ends with a lecture
where students are tested, in preparation for the project, and the project, which is the same for
all teams and prepared by the teachers, is presented. The content of the project has been the
same since the project started.

In the project, students work in teams of up to 10-12 students during six development
iterations. Each iteration has an exercise session for planning and a mandatory scheduled 8
hour lab for software development. In between planning and development, each team member
should spend 4 hours of self-study time on a so-called spike. A spike is a deep dive into some
area relevant to the team's work, for instance, testing out a tool, implementing a test of a
functionality etc. During the project teams are coached by students from a parallel course on
coaching of software development teams (EDAN80). At the end of the project there is a project
event and a final lecture to summarise the course.

During project labs students are supposed to follow the practice of XP, briefly described in
Section 2.1, which advocates for practices like pair programming (two students working
together in front of one screen), test-driven development, simple design, and reflection. While
pair programming, students sit in pairs in front of one screen, taking turns to be the driver
(writing the code) and the partner (reviewing the code) while having a continuous discussion
about the code (with the driver thinking aloud while writing).



Figure 1: Course Structure Overview of EDAF45. The structure of EDAF45 as it is laid out over
two study periods. The length of activities indicate their length in time, e.g., long labs are 8
hours and lectures are 2 hours. Reflections and releases are handed in.

3.2.2 Student Assessment
During the course students hand in reflections, individually and in teams. These reflections are
very short, from 1-2 sentences to a paragraph. To take part in the project, students have to pass
a test (kontrollskrivning). During the project, students show releases to the project customer
(played by a teacher) and to other students for a final project review via peer assessment. At the
end of the project, each team presents the project to another team and takes part in a project
event where they demo their project. The course does not have a final examination.

3.2.3 Course Assessment
A summary from the four most recent CEQ reports for the course (2017-2020), are shown in a
plot in Figure 2. Reviewing the plot, we see that the result presented for the summarising
questions from the questionnaire hover around 50 and above on a scale from -100 to 100.
Overall, the results over the last couple of years are fairly consistent, with some fluctuation for
‘course satisfaction’ and ‘appropriate workload’ (but these are still roughly in the range above
50). The score for ‘perceived importance’ stands out at consistently being close to 100.



Figure 2: Summary of CEQ Reports for EDAF45 (2017-2020). The left bar shows the scale used
in the CEQ form and the included results are from the summary of the questionnaire listed in
the beginning of each yearly CEQ report.

To further assess the course, the author conducted semi-structured interviews with three
teachers connected to EDAF45 or its companion course EDAN80.

When the teachers were asked about what works and doesn’t work in the course (A.3. Q1) the
general impression was that most things work well in the course. T1 mentioned that a pair of
researchers, studying the work in teams during the last instance of the course, had observed
less design discussion and distribution of work between team members than what would be
preferable, which could be something to try to improve in the course. T2 mentioned that the
course project is designed to be open and flexible, but one consequence of this is that teams
can make their way through the whole project without having to refactor their code. T3
mentioned that students learn a lot from each other but they may learn different things
depending on the students. Teams may also experience problems, due to personal differences,
issues with coaches, and so on, which may give students a negative experience. T3 also
mentioned that some of the practices in the course are by design “extreme”, for instance, pair
programming all the time is extreme but it’s good for students to learn how to think out loud
(which is part of the practice). T1 also mentioned some history behind the unconventionally
late lectures in the structure of the course, and that the reason is to not lose too much
momentum before the project.

When asked about observed problems in teams and how to mitigate these (A.3 Q2). T1 and
T3 mentioned that there may be an imbalance between team members, for instance, a student
may be dominant and not let others speak (but coaches can notice this and try to do something
about it). One challenge is when students are more technically skilled than the coaches and try
to pull in one direction, this can be fine (we want students to show technical leadership) but we
want the whole team to go in the same direction. Also, sometimes students think they are



skilled when they are not. T2 mentioned that teams sometimes spend too much time talking
about stories during planning meetings and not as much on reflection to improve the practice
in the team. Another problem is that teams may start to try test-driven development (TDD) but
give up as soon as it gets difficult. In both these cases coaches can help, for instance, by setting
off time for reflection (mentioned by T2) or encouraging TDD (mentioned by T1). T2 mentioned
that the free-rider problem is mitigated with scheduled labs and pair programming - it’s hard to
be an entirely passive member of a team.

Finally, when asked about self-coaching teams (A.3-Q3), T1 mentioned that they have run
two instances of the course with self-coaching teams; the first with team members that also
took part in the meeting for the coaches in the other source (did not work so well due to those
meetings covering a lot of literature in the coaching course, but it was also problematic to
discuss the teams while there was a team member present), and the second instance with
teams coaching themselves with extra assistance from the teacher acting as customer. T2 saw
problems with self-coaching in that a team member coach has less overview, and it also does
not work well to rotate coaches, as there are some additional tasks that you need to do as the
coach. T2 suggested having explicit tasks during an iteration (during 2h or so) to create
structure that the coaches otherwise provide. The coaches often act as project leaders in the
beginning, (providing structure at meetings, organising morning and lunch stand-up meetings,
fika with reflection), but they hand this over to the teams as they ramp up. T1 mentioned an
example of a team with refactoring growing out of proportion in a self-coaching team. T1 also
mentioned feedback from students where a mix of coached and self-coached teams was
perceived as unfair, especially as coaches work in pairs giving the appearance that there should
be more coaches available. T3 thought self-coaching teams may have benefits as teams then
would need to take responsibility and ownership of the problem faster.

3.3 Analysis
Reviewing the material gathered about the course we identify the following Issues:

● Two Study Periods One reason why EDAF45 is considered difficult to schedule is that it
runs over two study periods.

● Long Scheduled Labs The full-day mandatory labs are making the course difficult to
schedule for programmes other than the D programme.

● Team Coaches Are Expensive / Too Few Teams are coached by students from a parallel
course on coaching of software development teams (EDAN80). This arrangement creates
strong coupling between these courses which incurs scheduling and cost penalties.
Recently there has not been enough coaches, resulting in forced self-coaching.

● Too Focused on XP / Exposure to Few Methods The format of the course is strongly tied
to a specific method for agile software development, called Extreme Programming (XP).
This method advocates for pair programming, where developers program in pairs in
front of one screen, at all times. In practice, pair programming is useful for certain tasks
(learning something new, debugging an issue), but not for others (mundane everyday
tasks) according to [Coman et al., 2008].

● Free Riders Student groups are large and coaching engagement varies. Pair
programming exposes programming skills and there is some pressure to participate in



this activity, but a student can still “take a back seat” and just follow along to get past
the course.

● Malfunctioning Teams Despite coaching a team can malfunction. This can happen for
many reasons but passive coaches can possibly contribute to the problem by not
reacting.

● Prioritising Progress over the Team As mentioned in the interviews, students may focus
too much on stories and not on reflection to improve the team practice.

4 EDAG05
In this section, we present the suggested format of EDAG05 and then we analyse the format by
gradually stepping through the issues identified for EDAF45.

4.1 Structure
The starting point for EDAG05 is a refactored version of EDAF45, squeezed into one study1

period, shown in Figure 3. The teams are ramped-up during an initial two weeks, then the
project is run over four weeks, before the course ramps down again with one week of project
presentations, demos, a guest lecture and a final lecture summarising the course. There are in
total fewer lectures (six instead of nine) and labs (four instead of five). The plan is to reduce and
focus the content in the lectures to what is essential for the project, and likewise for the labs.
The goal is to give students all the crucial pieces of an “iteration 0” before the project,
step-by-step via the labs. The number of hours for project iterations is the same, each iteration
is extended to twelve hours (from eight) and the number of iterations are reduced to four (from
six).

1 Refactoring is a term used in software development. A code refactoring is a transformation of code
which doesn’t change its external behaviour.



Figure 3: Course Overview for EDAG05. The planned structure of EDAG05 laid out over one
study period. The size of activities indicate their length in time, e.g., lectures are 2 hours and
long labs are 12 hours. Reflections and releases are handed in.

4.1.1 Teams
Teams are self-coached and self-organised, meaning that they define how they want to
coordinate their coaching (which student will have this role; one, several, a rotation) and when
they will work during each iteration. The team plans how they will schedule their iterations but
will be given a framing of three days (Wed - Fri) where they should schedule a total of twelve
hours for joint development work. Teams will be recommended to not schedule all the hours of
an iteration in one go and to schedule at least three hours in one session. The roles in the team,
expectations on teammates, and the team schedule is put down in a team contract and handed
in before the project. Students taking on the coaching role will use some of their spike time
(individual work done before an iteration) for this task.

To communicate what they have agreed to amongst themselves in the team, each team hands
in a team contract outlining these details before the project starts. The use of a social contract
is a practice used by others transferring agile practices into the classroom [Krehbiel, 2017],
where such a contract helps to define the rules for the class.

4.1.2 Agile Methods
During the project the teams will work on a tool-oriented and representative software
developer stack with tool support for quality control via code review, continuous integration
and deployment, issue tracking, and planning. This tool stack and agile practices will be
introduced in the labs to prepare students for the project, bringing them to a point where they
have an “iteration zero” of the project. The strong coupling to XP in EDAF45 is loosened up to
introduce other agile software development practices common in the industry, such as code
review and distributed teams. With the use of code review students continuously peer assess



each other's work, and they can also have asynchronous digital conversations about code
allowing them to work in a more distributed fashion.

Still, despite introducing code review, we want teams to learn the practice of pair
programming to be able to make use of the practice when appropriate. The approach taken, to
broaden the scope of the methods introduced, is to add a methods focus to each iteration:
(iteration 1) co-located team and strict pair-programming (like in EDAF45), (iteration 2)
co-located team working together but not using pair programming, (iteration 3) distributed
team with all member sitting in a different physical location, and (iteration 4) a final
mixed-method iteration where teams select what they want. With pair programming being
observed as more suitable for problem solving and learning new things [Coman et al., 2008], it
appears that it would be especially useful in the first and last project iterations. Having multiple
methods will allow students to experience what they prefer and give them the possibility to
pick the method most suitable to the task at hand.

4.2 Student Assessment
Students are assessed via achievements, reflections, and project deliverables, further explained
below.

4.2.1 Achievements
During the course students and teams should unlock a number of achievements, in a fashion
similar to the ‘achievement unlocked’ approach described in Section 2.2. An achievement is
typically something that all students or teams should do to pass the course, for instance, a
student should pair program with all team members, and a team should use test-driven
development. An achievement is unlocked via evidence and a description of why this evidence
shows that the achievement has been unlocked. The evidence should be some artefact tracked
in the developer stack, for instance, a commit, a code review, or similar, where authors and
activities are tracked. Students and teams decide when they want to unlock achievements and
what evidence they want to use to do it.

The notion of achievements in EDAG05 is perhaps the largest change to the format of
EDAF45. To test the view on using achievements in the course, a final question about
achievements was added to the interviews (Appendix A.3). The general response was positive
among the interviewees. T1, who also had informally discussed the potential for students to be
overwhelmed with the author, suggested that achievements could be displayed on a planning
board similar to how project stories are managed in the teams, making them into “stories for
the course”. T3 mentioned that it would be good for teams to focus on unlocking achievements
rather than on finishing stories. T3 further suggested that we have more achievements than
required to motivate students and to increase engagement.

With this feedback in mind, we will introduce achievements as stories for the course in which
students need to unlock a certain number to pass. We aim to include more achievements than
need to be unlocked while not making the list too long. Also, as the concept of achievements
may be new to students, they will get to practise how achievements work during the labs in the
first two weeks so that they are familiar with the concept when the project starts.



4.2.2 Reflections
Students and teams hand in reflections, where they reflect on, expectations on the course, labs,
project iterations, and the final project week. A student reflection is focused on the work of the
student, while the team reflections focus on the work of the team. In a reflection a student or a
team, write up to a paragraph on a predefined topic, and in addition they list achievements they
want to unlock. At the end of the course, students summarise their work in the course with a
final reflection where they connect their work in the course with their initial expectations on
the course.

The use of reflections is extensive in EDAF45, as illustrated in Figure 2, where reflections are
part of the agile practices being taught in the course. For EDAG05, we add additional reflections
in the beginning of the course, for the labs, and at the end of the course, to encourage students
to further reflect on their learning in the course. This strategy of transferring agile practices to
the classroom is inspired by [Krehbiel, 2017], reporting on successful use of reflection in the
classroom.

4.2.3 Project Delivery
Similar to EDAF45, at the end of the course project each team packs up their project and hands
it over to another team for review. The other team presents and demos the project, and provides
peer feedback to the team owning the project. As a final event in the course, all teams
demonstrate their project during a joint session.

4.3 Course Deployment
With more tool-based practices more activities become traced, e.g., commits in the version
control system, comments from code reviews, issues etc. Tracing of these activities give insights
into the work of a team. With this information, we can gather data that coaches typically
otherwise observe in a team, for instance, the most active team member in a team (in terms of
traced activities), or when the members of a team work. We can use this information to
compensate for the lack of coaches and monitor the work in the teams from a distance. If we
see “red flags”, for instance, teams not working during their scheduled time (according to the
team contract), or teams primarily working in the middle of the night (not sustainable), we can
react and have a discussion with the team - a kind of on-demand coaching.

4.4 Course Evaluation
The final individual reflections, summarising the experience of the course and tying them back
to the expectations in the beginning of the course, will provide some evaluation of the course.
Still, the primary goal is not to gather feedback about the course with this exercise but to
encourage self-assessment among students [Reinholz, 2016], and in addition, the format may
prevent students from giving feedback freely. To further let students give feedback
anonymously, there will be a voluntary online CEQ after the course.



4.5 Analysis
With the suggested format for EDAG05 presented we now walk through the issues identified for
EDAF45 and analyse how well these are addressed and discuss potential new risks.

4.2.1 Issue: Two Study Periods
In the new structure, the course is squeezed into one study period instead of two, making it
easier to schedule. The immediate risk with this new structure is that there won’t be enough
time for students to ramp up for the project. This structure is more intense than that used in
EDAF45, but as mentioned in the interviews there has been some concern about losing
momentum in that course when it is laid out over two study periods. On the other hand, one
potential benefit with this structure is that it can build momentum for the project.

4.2.2 Issue: Long Scheduled Labs
In the new format, teams schedule their own lab time, allowing each team to find common slots
in their schedules. There are some restrictions in that teams need to schedule their time during
three days, but the selected work sessions for an iteration may differ between teams. The use of
team contracts is intended to communicate when each team will work. Still, one risk with the
variation between teams is that it will be difficult for teachers to keep track of the work in the
teams, with the benefit that the variation is central to making the course easier to schedule.

4.2.3 Issue: Team Coaches Are Expensive / Too Few
The use of self-coaching teams reduces the cost of the course, provided that there is a format
for self-coaching that works, or the teachers in the course will end up coaching all teams. One
risk here is that teams become confused and can’t decide which strategy for self-coaching they
want to use. This needs to be mitigated in the instructions given to teams during the ramp-up
weeks in the beginning of the course. The use of a team contract has the potential of helping
with clarification around the self-coaching, it at least provides a forum where the rules of the
team can be discussed.

4.2.4 Issue: Too Much Focus on XP / Exposure to Few Methods
A central difference to EDAF45 is the loose coupling to XP and the introduction of modern code
review, where developers use tools to review each other's changes for quality assurance before
they are committed to the code base, an activity used extensively by companies such as Google
[Sadowski et al., 2018]. Code reviewing and pair programming both serve a similar purpose, but
they still co-exist in the industry by introduction of, for instance, a PAIR tag in commit messages
for changes devised via pair programming.

From a pedagogical perspective, both of these code review practices map well to the
assessment cycle described in Section 2.3, suggesting that they help students with goal and
performance awareness. As an example, code review typically includes the following steps: a
developer authors and uploads a change for review (similar to step 1 in the model), then
assigned reviewers review the change and adds comments (similar to steps 2 and 3), then
author reviews comments and potentially responds (similar to step 4 and 5), then the author



updates the change under review (similar to step 6), and then the process starts over again.
Peer conferencing (step 5 in the model) is quite common in the code review process, via code
review tools and face-to-face when needed. This mapping also holds for pair programming. As
pointed out by T3 in the interviews (Section 3.2.3), students learn a lot from each other which is
an observation that can be seen as an indication of increased goal and performance awareness
due to these practices, or at least pair programming up until now.

One risk with the introduction of more agile practices is that students have to keep track of
more things, but on the other hand the practices taught in the course are closer to those used
in industry.

4.2.5 Issue: Free Riders
The new structure lets teams self-schedule their project iterations. The immediate risk is less
oversight; teams may not work the expected hours during the project iterations. Still, some
oversight can be gotten from monitoring the work in the team by observing traced activities in
the developer stack. This traced information can be passed on to the teams to make it clear that
there is still some oversight. In addition, the team contracts should help to clarify what the
expectations on each team member are. Finally, the use of achievements will assess students
individually, which means more individual assessment than in the previous course despite the
reduced oversight.

3.2.6 Issue: Malfunctioning Teams
The use of monitoring to observe the work in teams should assist with detection of some red
flags, like an inactive member of a team, but will be a bad tool for detection of other less
obviously tracked things, such as unhealthy undercurrents in a team. As a complement to
monitoring via tools, teams will interact with teachers acting as customers to the teams. During
these meetings there are some additional possibilities to observe if a team is having issues.

3.2.7 Issue: Progress over the Team
As mentioned in the interviews by T3, some teams may focus more on finishing stories than the
practice of the team. One potential benefit of introducing achievements is that it will shift the
focus of the teams, to unlock achievements rather than finishing stories.

5. Summary
In this report, we have reviewed the format of the current course on software development in
teams (EDAF45) at the department of computer science. Based on identified issues in EDAF45, a
format for a new course on agile software development (EDAG05) is proposed and reviewed in
light of the issues identified for the earlier course. The proposed format has a couple of major
differences to the previous course in the updated course content, the more intense structure
during one study period, and the use of achievements. The main risks with these larger changes
is that it will be intense and that there will be too many things to keep track of for students.



References
[Beck, 2004] Beck, K. (2004). Extreme Programming Explained: Embrace Change. 2nd Edition.
Addison-Wesley. ISBN-13: 978-0-321-27865-4.

[Beck et al., 2001] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R., Mellor,
S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for agile software development.
Agile Alliance. Available at www.agilemanifesto.org.

[Bergmann & Sams, 2012] Bergmann J., and Sams, A. (2012). Flip Your Classroom: Reach Every
Student in Every Class Every Day. International Society for Technology in Education.

[Biggs, 1996] Biggs, J. (1996). Enhancing Teaching Through Constructive Alignment. Higher
Education, Vol 32(3): 347–364.

[Bloom, 1968] Bloom, B. S. (1968). Learning for Mastery. Instruction and Curriculum. Regional
Education Laboratory for the Carolinas and Virginia, Topical Papers and Reprints, Number 1.
Evaluation Comment Vol 1(2).

[Coman et al., 2008] Coman, I. D., Sillitti, A., and Succi, G. (2008). Investigating the Usefulness of
Pair-Programming in a Mature Agile Team. XP’08: Proceedings of the International Conference on
Agile Processes and Extreme Programming in Software Engineering.

[Hedin et al., 2005] Hedin, G., Bendix, L., and Magnusson, B. (2005). Teaching Extreme
Programming to Large Groups of Students. Journal of Software and Systems, Vol 74(2): 133--146,
Elsevier.

[Hedin et al., 2006] Hedin, G., Bendix, L., Magnusson, B., and Ohlsson, L. (2006). Tandemo
Courses . Students Coaching Students. In proceedings of the Pedagogical Inspiration Conference
2006, Faculty of Engineering, Lund University, Sweden.

[Krehbiel et al., 2017] Krehbiel, T. C., Salzarulo, P. A., Cosmah, M. L., Forren, J., Gannod, G.,
Havelka, D., Hulshult, A. R., and Merhout, J. (2017). Agile Manifesto for Teaching and Learning.
Journal of Effective Teaching, 17(2):90--111.

[Reinholz, 2016] Reinholz, D. (2016). The Assessment Cycle: a Model for Learning Through Peer
Assessment. Journal of Assessment & Evaluation in Higher Education, Vol. 41(2): 301--315,
Routledge.

[Sadowski et al., 2018] Sadowski, C., Söderberg, E., Church, L., Sipko, M., and Bacchelli, A.
(2018). Modern Code Review: a Case Study at Google. ICSE-SEIP’18.

[State of Agile] CollabNet VersionOne (2019). 13th Annual State Of Agile Report.
www.stateofagile.com, visited May 2020.

http://www.agilemanifesto.org/
https://www.stateofagile.com/


[Wrigstad & Castegren, 2017] Wrigstad, T., and Castegren, E. (2017). Mastery Learning-Like
Teaching with Achievements. SPLASH-E’17: Proceedings of the ACM SIGPLAN conference on
Systems, Programming, Languages and Applications: Software for Humanity - Educational Track.

Appendix

A.1 Course Plan for EDAF45
Aim: “The aim with this course is to give knowledge about and practical experience on cooperation
within a software development team. Focus is on the method Extreme Programming, which uses a
highly iterative work process. The course covers principles for customer cooperation, planning,
sustainable design and implementation, testing, and delivery of the product. The course also gives
additional training in object-oriented programming. The course also covers an introduction to
program development methodology in general and the terminology used.”

Learning Goals - Knowledge and Understanding:
● LG1: “be able to present and motivate the different practices within extreme programming.”
● LG2: “be able to present principles for version control.”
● LG3: “be able to define basic terms and definitions in software engineering.”
● LG4: “be able to describe the most common software development processes.”

Learning Goals - Skills and Abilities:
● LG5: “be able to develop and deliver a sustainable software product in cooperation with

others.”
● LG6: “be able to apply practices and tools for automated testing, refactoring, and version

control.”
● LG7: “be able to apply iterative planning.”
● LG8: “be able to apply pair programming.”
● LG9: “be able to reflect on your own and the team's activities during a development project

and understand how these contribute to a successful development process.”

A.2 Course Plan for EDAG05
Aim: “To give knowledge and practical experience of how to develop software together in a team.
[The course focuses] on the practical experience of methods and tools suitable for a smaller software
project with one developer team.”

Learning Goals - Knowledge and Understanding:
● LG1: “be able to define basic concepts within software development.
● LG2: “be able to describe and motivate different techniques used in software development.”

Learning Goals - Skills and Abilities:
● LG3: “be able to develop and deliver software in collaboration with others.
● LG4: “be able to apply techniques and tools for software development.”



Learning Goals - Estimation and Assessment:
● LG5: “be able to assess how activities in a software project affect the development process.”
● LG6: “be able to see connections between activities in the development process and the final

software product.”

A.3 Protocol for Semi-structured Interviews
Questions:

1. What works in EDAF45? What doesn’t work?
2. What problems do teams have? Mitigation?
3. [After explaining that EDAF45 has been starting to use self-coaching teams]

How well does self-coaching of teams work? Problems? Mitigation?
4. [After explaining the Achievement Unlocked Model]

What do you think about using achievements in EDAF45?


